### Edge-Enhanced Dilated Residual Attention Network for Multimodal Medical Image Fusion IEEE BIBM 2024 Short Paper

**Meng (Simon) Zhou**<sup>\*1,</sup> Yuxuan Zhang <sup>\*1</sup>, Xiaolan Xu<sup>1</sup>, Jiayi Wang<sup>2</sup>, and Farzad Khalvati <sup>1,3</sup>

<sup>1</sup> Department of Computer Science, University of Toronto

<sup>2</sup> Desautels Faculty of Management, McGill University

<sup>3</sup>Department of Medical Imaging, University of Toronto



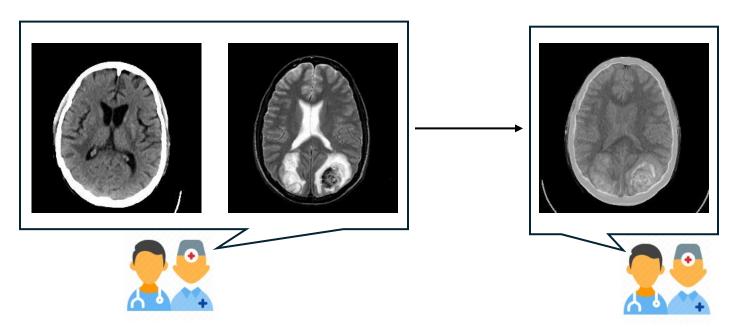


# Outline

- Background
- Related Works
- Problem
- Proposed Method
- Experiments
- Conclusions and Future work

# Background

- Multimodal image fusion plays an increasingly prominent role in clinical diagnosis.
- It aims to aggregate common and complementary information from different image modalities as well as integrate the information to generate more clearer and informative images
- Physicians must analyze multiple images to make informed decisions, a process that is both time-consuming and laborious.



## **Related works**

- CNN-based:
  - IFCNN [1]: CNN-based image fusion framework for multi-focus, infraredvisible, and multimodal medical image fusion. Elementwise fusion rules to combine feature maps directly.
  - MSRPAN [2]: Residual pyramid attention network for multimodal medical image fusion and Feature Energy Ratio Strategy to fuse feature maps
  - MSDRA [3]: Double residual attention network for multimodal medical image fusion and uses weighted L1 Norm to fuse feature maps



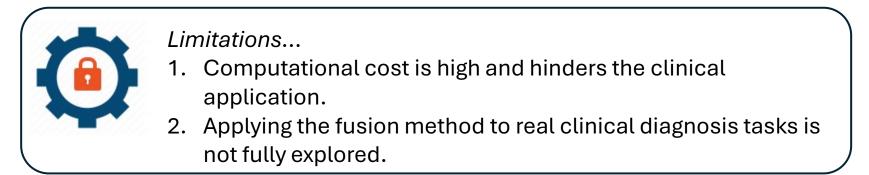
Limitations...

- 1. Losing the structural information and edge details, which are crucial for medical images
- 2. Lack of multiscale learning capabilities

[1] Zhang, Y., Liu, Y., Sun, P., Yan, H., Zhao, X., & Zhang, L. (2020). IFCNN: A general image fusion framework based on convolutional neural network. *Information Fusion*, *54*, 99-118.
[2] Fu, J., Li, W., Du, J., & Huang, Y. (2021). A multiscale residual pyramid attention network for medical image fusion. *Biomedical Signal Processing and Control*, *66*, 102488.
[3] Li, W., Peng, X., Fu, J., Wang, G., Huang, Y., & Chao, F. (2022). A multiscale double-branch residual attention network for anatomical–functional medical image fusion. *Computers in biology and medicine*, *141*, 105005.

# **Related works**

- Transformer-based:
  - SwinFusion [3]: Combining a CNN feature extractor with a cross-domain transformer model to fuse local and global information.
  - MRSCFusion [4]: Combining a multiscale CNN model and applied residual Swin Transformer layers to fuse cross-domain information.
  - MACTFusion [5]:Light-weight cross modality transformer with window and grid attention.



[3] Ma, J., Tang, L., Fan, F., Huang, J., Mei, X., & Ma, Y. (2022). SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer. *IEEE/CAA Journal of Automatica Sinica*, *9*(7), 1200-1217.

[4] Xie, X., Zhang, X., Ye, S., Xiong, D., Ouyang, L., Yang, B., ... & Wan, Y. (2023). MRSCFusion: Joint residual Swin transformer and multiscale CNN for unsupervised multimodal medical image fusion. *IEEE Transactions on Instrumentation and Measurement*.

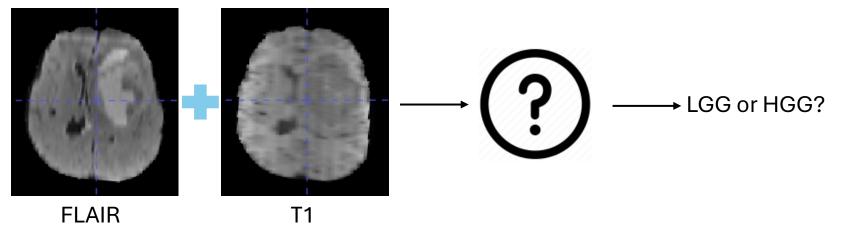
[5] Xie, X., Zhang, X., Tang, X., Zhao, J., Xiong, D., Ouyang, L., ... & Teo, K. L. (2024). MACTFusion: Lightweight Cross Transformer for Adaptive Multimodal Medical Image Fusion. *IEEE Journal of Biomedical and Health Informatics*.

# Problem

• Two most common fusion tasks in medical imaging: MRI-CT and MRI-SPECT fusion tasks

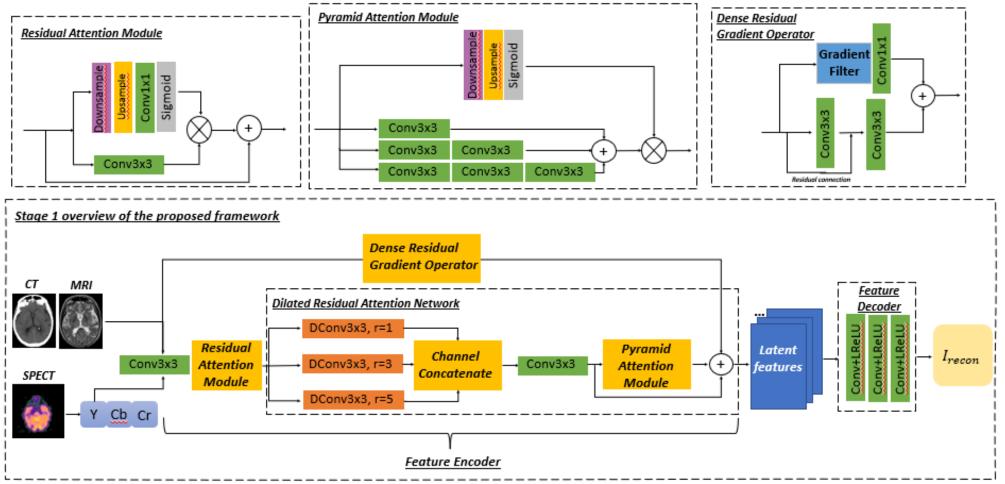


• To further evaluate the effectiveness of the fusion method, we apply it to a downstream clinical brain tumor pathology classification task between Low-Grade and High-Grade Gliomas.



### **Proposed Method**

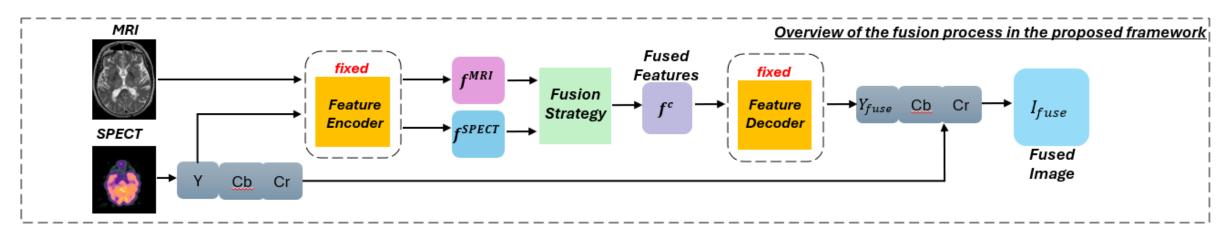
#### Stage 1



Asymmetric Autoencoder (Stage 1 model) in the proposed framework

### **Proposed Method**

#### Stage 2



#### **SFNN Strategy**

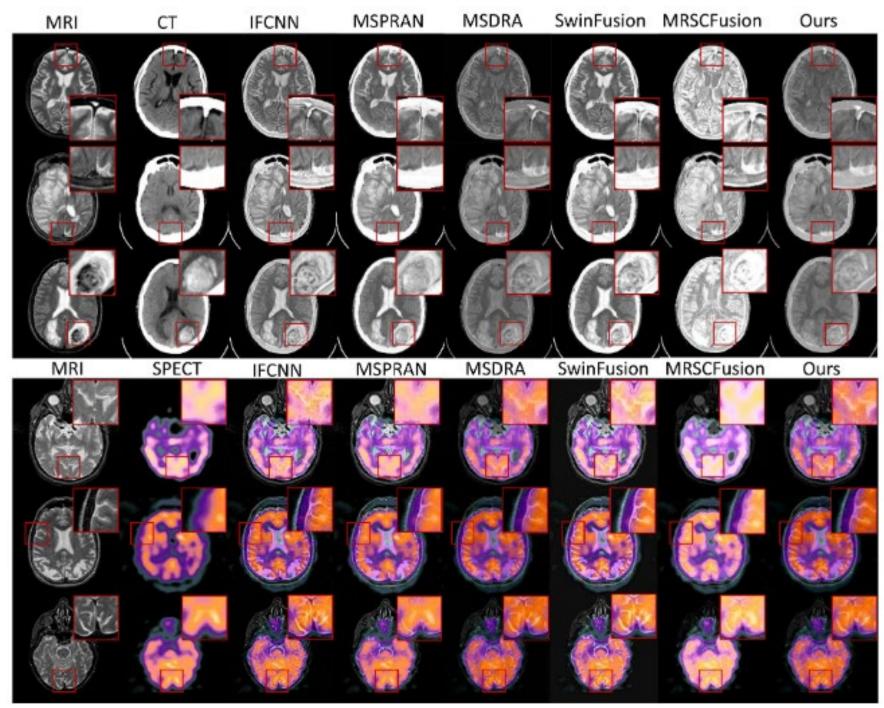
$$W_{k} = \frac{\phi(\|S(x_{i})^{k}\|_{*})}{\sum_{k=1}^{C} \phi(\|S(x_{i})^{k}\|_{*})}$$

#### Loss function

$$\mathcal{L}_{pixel} = \|x - \hat{x}\|_{2}^{2}, \ \mathcal{L}_{grad} = \|\nabla x - \nabla \hat{x}\|_{2}^{2},$$
$$\mathcal{L}_{perp} = \sum_{k=1}^{C} \|f_{i}^{k}(x) - f_{i}^{k}(\hat{x})\|_{2}^{2}$$

$$\mathcal{L}(\theta) = \mathcal{L}_{pixel} + \lambda_1 * \mathcal{L}_{grad} + \lambda_2 * \mathcal{L}_{perp}$$

Qualitative Results



### • Quantitative Results

| Dataset   | Method          | PSNR               | SSIM                | FMI                 | FSIM                | EN                  |
|-----------|-----------------|--------------------|---------------------|---------------------|---------------------|---------------------|
| MRI-CT    | IFCNN [7]       | $15.594 \pm 0.112$ | $0.700 \pm 0.015$   | $0.870 \pm 0.012$   | $0.801 \pm 0.001$   | 8.968±0.227         |
|           | MSRPAN [8]      | $14.790 \pm 0.233$ | $0.749 \pm 0.003$   | $0.744 \pm 0.001$   | $0.804 \pm 0.001$   | $7.773 \pm 0.273$   |
|           | MSDRA [9]       | $15.308 \pm 0.437$ | $0.742 \pm 0.037$   | $0.872 \pm 0.002$   | $0.788 \pm 0.005$   | $9.554 \pm 0.767$   |
|           | SwinFusion [13] | $14.962 \pm 0.173$ | $0.768 {\pm} 0.007$ | $0.882 \pm 0.002$   | $0.810 \pm 0.001$   | $8.445 \pm 0.078$   |
|           | MRSCFusion [1]  | $14.476 \pm 0.205$ | $0.713 \pm 0.012$   | $0.877 \pm 0.006$   | $0.791 \pm 0.010$   | $7.544 \pm 0.232$   |
|           | EH-DRAN(Ours)   | $16.830 \pm 0.490$ | $0.753 \pm 0.007$   | $0.883 {\pm} 0.005$ | $0.820 \pm 0.003$   | $10.727 \pm 0.531$  |
| MRI-SPECT | IFCNN [7]       | $19.728 \pm 0.228$ | $0.721 \pm 0.025$   | $0.846 \pm 0.062$   | $0.783 \pm 0.027$   | $10.167 \pm 0.429$  |
|           | MSRPAN [8]      | $19.174 \pm 0.046$ | $0.732 \pm 0.002$   | $0.838 \pm 0.003$   | $0.793 \pm 0.002$   | 9.737±0.202         |
|           | MSDRA [9]       | $19.662 \pm 0.165$ | $0.725 \pm 0.003$   | $0.839 {\pm} 0.003$ | $0.794 \pm 0.003$   | $10.784 \pm 0.447$  |
|           | SwinFusion [13] | $17.557 \pm 0.021$ | $0.728 \pm 0.004$   | $0.808 {\pm} 0.007$ | $0.819 \pm 0.011$   | $13.066 \pm 0.428$  |
|           | MRSCFusion [1]  | $18.412 \pm 0.211$ | $0.734 \pm 0.012$   | $0.827 \pm 0.009$   | $0.814 \pm 0.006$   | $9.87 \pm 0.600$    |
|           | EH-DRAN(Ours)   | $21.455 \pm 0.071$ | $0.736 \pm 0.002$   | $0.876 {\pm} 0.004$ | $0.843 {\pm} 0.003$ | <u>11.970±0.538</u> |

Bold and <u>underline</u> numbers represent the best and second-best results for each dataset, respectively

### • Ablation study

| Dataset   | Method                                 | PSNR               | SSIM                | FMI               | FSIM              | Entropy            |
|-----------|----------------------------------------|--------------------|---------------------|-------------------|-------------------|--------------------|
| MRI-CT    | Base Model                             | $15.623 \pm 0.032$ | 0.745±0.013         | $0.878 \pm 0.003$ | $0.802 \pm 0.003$ | 9.122±0.706        |
|           | Base Model+ $\mathcal{L}_{grad}$       | $16.355 \pm 0.038$ | 0.749±0.010         | $0.881 \pm 0.002$ | $0.818 \pm 0.002$ | 9.771±0.528        |
|           | Base Model+ $\mathcal{L}_{grad}$ +DRGO | 16.830±0.490       | $0.753 \pm 0.007$   | $0.883 \pm 0.005$ | $0.820 \pm 0.003$ | $10.727 \pm 0.531$ |
| MRI-SPECT | Base Model                             | $20.698 \pm 0.002$ | $0.743 \pm 0.008$   | $0.833 \pm 0.006$ | $0.836 \pm 0.005$ | 10.010±0.563       |
|           | Base Model+ $\mathcal{L}_{grad}$       | $20.738 \pm 0.026$ | $0.740 \pm 0.011$   | $0.837 \pm 0.002$ | $0.838 \pm 0.004$ | 10.454±0.426       |
|           | Base Model+ $\mathcal{L}_{grad}$ +DRGO | $21.455 \pm 0.071$ | $0.736 {\pm} 0.002$ | 0.876±0.004       | $0.843 \pm 0.003$ | $11.970 \pm 0.538$ |

### • Fusion time comparison

|           | IFCNN | MSRPAN | MSDRA | SwinFusion | MRSCFusion | Ours |
|-----------|-------|--------|-------|------------|------------|------|
| Params(M) | 0.08  | 0.10   | 0.20  | 0.97       | 23.00      | 0.50 |
| Time(s)   | 0.89  | 0.79   | 0.81  | 1.31       | 2.85       | 1.26 |

• Results on ROI-based LGG/HGG tumor pathology types classification

|                      | AUC                 | F1-Score            | Accuracy            |
|----------------------|---------------------|---------------------|---------------------|
| T2 (1-channel)       | $0.722 {\pm} 0.021$ | $0.703 {\pm} 0.018$ | $0.604 {\pm} 0.037$ |
| FLAIR (1-channel)    | $0.727 {\pm} 0.024$ | $0.701 {\pm} 0.008$ | $0.611 \pm 0.017$   |
| T2+FLAIR (2-channel) | $0.723 {\pm} 0.028$ | $0.717 {\pm} 0.012$ | $0.640 {\pm} 0.015$ |
| Fused (1-channel)    | $0.769 {\pm} 0.003$ | $0.723 {\pm} 0.006$ | $0.640 {\pm} 0.011$ |

# **Conclusions and Future Work**

- Novel asymmetric autoencoder architecture incorporating a Dilated Residual Attention Network (DRAN) for effective multiscale feature extraction
- Integrated a Dense Residual Gradient Operator (DRGO) as an edge enhancer to capture fine-grained edge details
- Introduced a family of parameter-free fusion strategies for multimodal image fusion, designed to operate without requiring parameter computation during both training and inference phases
- Extensive evaluated on three datasets to valid the effectiveness of the proposed approach
- Future Work: Extend to 3D, Explore Mamba-based methods.

# Thank you for your listening

• Code:



• Arxiv extended version:

