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Abstract

Accurate brain tumor segmentation in MRI images is crucial for effective diagnosis
and treatment planning. However, traditional U-Net architecture faces challenges in
capturing long-range dependencies and preserving features of small-sized tumors,
which limits its performance. Hence, we present MTSegFormer, a novel learning
framework for 2D brain tumor segmentation using latent transformer through the
Multi-task learning paradigm. We use a UNet-like structure with a latent space
transformer, and a self-supervised image decoder to build up the overall framework.
We also introduce the Breath-wise Cross Attention module that aims to refine the
skip connection features. Experiment shows our proposed framework achieves
superior performance compared to other baselines by up to 11% in Dice and 10% in
IoU score. The code is available at https://github.com/simonZhou86/
csc2516_proj

1 Introduction

Brain tumor segmentation is a critical task in medical image processing that plays an important role
in the diagnosis and treatment of brain tumors. Automated segmentation of brain tumors can assist
physicians and provide an accurate and reproducible solution for tumor monitoring.

Deep learning based segmentation methods have achieved great success in various semantic segmen-
tation tasks. Convolutional neural networks (CNN) are able to learn from the images and realize
end-to-end dense semantic segmentation with impressive segmentation accuracy [[1]. Though CNN
has shown excellent representation capacity, it suffers from the lack of long-distance dependency due
to limited receptive fields. Recently, Vision Transformers (ViT) have also reached state-of-the-art
performance on various computer vision tasks [2]. By leveraging the transformer structure, ViT is
more powerful for learning long-distance dependencies.

Multi-task learning is a technique where the model optimizes an auxiliary task additionally to improve
the performance of the main task or accelerate the training process. One approach to multi-task
learning is adding a self-supervised auxiliary task in which no manually labeled data is needed. For
the semantic segmentation task, a natural choice is to include an additional autoencoder task to help
the model preserve fine-grained information [3].

In this work, we propose a semantic segmentation method for 2D brain tumor segmentation from MRI.
We adapt a UNet-like structure [4] and append a transformer module preceding the decoder to capture
the global long-term dependency in the latent space. Besides, we add a self-supervised auxiliary
reconstruction task in parallel with the segmentation task to preserve fine-grained information. The
proposed method demonstrates the capacity to improve the accuracy of brain tumor segmentation.
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2 Related Work

Recent advances in deep learning have enabled highly accurate and efficient medical image seg-
mentation. U-Net, a convolutional neural network architecture consisted of a contracting path and a
symmetric expanding path, has been adopted for medical image segmentation tasks [4]. However,
U-Net has limitations in explicitly modeling long-range dependencies due to the intrinsic locality of
convolution operations [3]]. To address this issue, transformer-based architectures like TransUNet and
TransBTS have been introduced. While TransUNet, a 2D network that adopts ViT with a U-Net-like
decoder, focuses solely on the spatial correlation between tokenized image patches [S]], Transformer
in 3D CNN for 3D MRI Brain Tumor Segmentation (TransBTS) is based on 3D CNN to model
the long-range dependencies in both depth and spatial dimensions simultaneously for volumetric
segmentation [6].

Multi-task learning has been shown to improve segmentation accuracy by integrating related tasks
such as classification or detection. For small brain tumor segmentation from MRI, multi-task learning
has been applied with U-module to help retain features of small-sized tumors, which are easily
overlooked due to the decreasing feature resolution after each encoder layer of U-Net-based models
[3]]. Similarly, in 3D automated breast ultrasound imaging, multi-task learning has been applied to
jointly segment and classify tumors by training the multi-task network using an iterative training
strategy to extract auto-context features for both tasks where predicted segmentation maps are added
as a part of the input to guide feature extraction [7l]. Additionally, a multi-task learning network has
been developed to jointly train Glioma segmentation and IDH genotyping in an end-to-end manner
by sharing the spatial and global feature representation extracted from the hybrid CNN transformer
encoder [8]].

3 Method

3.1 Overall Framework

Figure [Ta] summarizes the proposed framework for this work, which consists of four core modules for
the segmentation task. 1). the image encoder, shown as the left branch in Figure[Id] is utilized to
generate compact feature maps that could capture the local spatial information. 2). the transformer
module is designed to capture the long-term dependency in a global manner. 3). the segmentor, shown
as the right branch in Figure [Ta] will gradually up-sample the feature maps with the convolutions
to produce a high-resolution segmentation mask. The encoder-segmentor constitutes the UNet-like
architecture [4, 9] with skip connection. 4). the image decoder, down right corner in Figureaims
to produce the reconstructed image to preserve the relevant and important information in the original
image as an auxiliary task. We hypothesize that the image reconstruction task will force the feature
extractor (encoder and transformer) retains the important local and global features in the latent space
and mitigates the side effects caused by down-sample convolutional layers.

3.2 Breath-wise Cross Attention Module

To ensure the feature maps pass into each convolution in the decoder that contains both the high-
resolution features from skip connections and the semantic richness from the deeper layer of the
network, we adapt the idea from [10] to design the cross attention module as shown in Figure [Tb]
The deeper layer features guide the attention module to not focus on the irrelevant or less-informative
regions from the skip connection features but highlight the significant regions where the tumor
presents. We use the traditional multi-head attention where query and key are the deeper layer
features and the value is skip connection features to get the attention output, followed by a residual
connection to stabilize the whole training process. Next, considering the medical images require
fine-grained information, we use the {1, 3, 5}-dilated convolution to learn the multi-scale spatial
context [[11] on the attention output. Finally, we aggregate the features from these three dilated
convolutions by element-wise addition.
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(b) Breath-wise Cross Attention Module, skip connec-
(a) An overview of our proposed method which con- tion features and deeper layer features are fed into the
tains an encoder, a transformer module, a segmentor multi-head attention module, following by dilated con-
and a decoder. volutions to extract multi-scale context.

Figure 1: Proposed method and the attention module

3.3 Loss function

Both the main task and auxiliary task are trained simultaneously. The combination of the dice
coefficient loss and the binary cross entropy loss is used to supervise the encoder and segmentor,
readers can refer to [[12] for more details of these two losses.

The loss function for the auxiliary task (L;ccon) is defined as in Equation (]D, where 1 is the
reconstructed image and [ is the original image. The first loss term measures the pixel differences
between I and I; the second loss term measures the image gradient differences in x and y-direction;
and the third loss term is the perceptual differences [13]. The final loss is the weighted combination
of Leeg and Lyecon €.8-5Liotal = €1Lseg + C2Lrecon, Where cg +co = 1.
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3.4 Data

Our data cohort contains 259 HGG patients and 76 LGG patients, a total of 335 patients, from the
BraTS 2019 dataset [14H16] ﬂ Among these patients, 268 patients are used for training and 67
patients are used for testing. The original 3D data are with size 240 x 240 x 155, which we then
reshape to #.5 x 128 x 128 where #5 indicates the total single-channel slices we have for all patients.
To achieve this, we treat every slice independently to each other, reshape to 128 x 128, and remove all
zero-valued segmentation masks and corresponding brain images afterward, since we are interested
in the slices with brain tumor present. Finally, we normalize all images within the range of [0, 1].
Due the computational and time limitation, we do not use any data augmentation methods.

4 Experiments and Results

All programs are implemented in Python and PyTorch frameworks. Every experiment runs for 10-12
hours using a single V100 GPU. All models run for 100 epochs with a batch size of 16 and an initial
learning rate of 0.001, a decay factor of 0.1 for every 30 epochs, and the optimizer is Adam. We
compared to UNet [4], Attention UNet [[17], and the 2D version of TransBTS [6l], the quantitative
segmentation results are reported in Table [T Our proposed method outperforms all other works
in Dice and IoU scores by 11% and 10%, respectively, indicating the superior performance of our
auxiliary decoder and the usage of the latent transformer. Below figure shows the original image and
segmentation mask, followed by the predicted mask generated from the four models we described
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above, we use a hard thresholding of value 0.5 to binarize all predicted masks. Next, we explore
the importance of the transformer and auxiliary decoder in our proposed framework by conducting
ablation studies. Table[2]shows the quantitative results, where (A) and (B) are the proposed framework
without the transformer and decoder module, respectively. (C) is changing to a different attention
module, and the last one is the proposed method. We can see that, compared to (B) and (A), if we do
not have either the decoder for the auxiliary task or the transformer, the Dice and IoU score drops
significantly, which validate our hypothesis in[3.1] Furthermore, the superior performance of the
cross attention over the attention-unet block (C) [17] demonstrates the effectiveness of the proposed
attention module discussed in[3.2]

Accuracy % T Dice Score T IoU Score 1

UNet 0.987 0.632 0.491
Attention UNet 0.988 0.676 0.534
TransBTS 0.985 0.703 0.555
Ours 0.989 0.742 0.596

Table 1: Main results for tumor segmentation. Higher values indicate better performance for all
metrics.

Accuracy % T Dice Score T IoU Score 1

(A) ours w/o transformer 0.989 0.616 0.530
(B) ours w/o recon 0.984 0.640 0.482

(C) ours with diff. att block 0.977 0.651 0.495
(D) ours with cross attention 0.989 0.742 0.596

Table 2: Results for the Ablation study. Higher values indicate better performance for all metrics.
w/o and diff. are abbreviations for without and different, respectively.
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Figure 2: Qualitative Results, “GT” stands for the Ground truth. The red bounding box highlights the
difference in the predicted mask between different methods.

5 Conclusion

In this work, we proposed a novel framework for 2D brain tumor segmentation. The proposed
method outperforms several segmentation models, such as UNet, Attention UNet, and the 2D version
of TransBTS, in terms of Dice and IoU scores. The ablation study we conducted validate the
effectiveness of the three core modules: image decoder, latent transformer, and the cross attention.
The results have shown the importance of the auxiliary image reconstruction task in preserving
fine-grained information and the superiority of the proposed cross-attention module in capturing
significant regions where tumor presents. As the future work, we want to investigate the fully
transformer architecture, i.e., replace encoder and segmentor with transformer encoder and decoder
layers. We also notice that our data cohort is imbalanced, so applying data augmentation techniques
to the current dataset may further improved the performance.
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