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Background

- Multimodal medical image fusion plays an increasingly
prominent role in clinical diagnosis.

« It aims to aggregate complementary information from
different image modalities to produce higher-quality fused
images (e.g., anatomical and functional images)

 Due to hardware constraints and current physical imaging
principles, individual modalities can only capture specific
aspects of tissue characteristics, leading to incomplete
diagnostic information.
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Related Works

« CNN-based:

« MSRPAN [1]: Residual pyramid attention network for multimodal medical image
fusion and Feature Energy Ratio Strategy to fuse feature maps

« MSDRA [2]: Double residual attention network for multimodal medical image fusion
and uses weighted L1 Norm to fuse feature maps.

« EH-DRAN [3]: Dilated residual attention network + edge enhancer to extract multi-
scale features and enhance edge details. A family of parameter-free fusion
strategies is proposed to fuse feature maps in the latent space.

4 Limitations... A
1. limited by their inherent local receptive fields, which restrict
their ability to capture long-range spatial dependencies.
2. Most of the methods are in two-stage, which create another
layer of computation
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Related Works

« Transformer-based:

« SwinFusion [4]: Combining a CNN feature extractor with a cross-domain
transformer model to fuse local and global information.

« MRSCFusion [5]: Combining a multiscale CNN model and applied residual Swin
Transformer layers to fuse cross-domain information.

« MACTFusion [6]: Light-weight cross modality transformer with window and grid
attention.

4 Limitations... A
1. Self-Attention mechanism requires quadratic computational

complexity, limiting the practical applications on large image
2. Applying the fusion method to real clinical diagnosis tasks is
not fully explored.
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Problem

« Two most common fusion tasks in medical imaging: MRI-CT and MRI-SPECT fusion
tasks (MRI-CT and MRI-SPECT from Harvard Whole Brain Atlas datasets)

« To further validate the effectiveness of the fusion method, we apply it to a downstream
clinical brain tumor pathology classification task between Low-Grade and High-Grade
Gliomas (BraTS 2019 dataset).
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Preliminaries

Mamba is a framework that model sequential data through a hidden state that evolves over time.
The transformation from a 1-D sequence x(t) to an output y(t) is achived through a hidden state
h(t). The implementation is typically achieved through linear ODEs:
h'(t) = Ah(t) + Bx(t), y(t) = Ch(t)
To discritize, we use zero-order hold:
A = exp(bA), B = (AA) " '(exp(AA) — I) - AB
We can rewrite the first equation as:
hy = Ah,_; + Bx;, y; = Ch,

Selective-scan:
1. can focus on or ignore particular information, like self-attention in Transformer

2. B,C,A is dynamic to the input, allowing the model to filter relevent information and focus on
important context within long sequences

3. B: filter out irrelevant data or to focus on important data to allow only relevant data to enter
into the new state.

4. C: selective to decide which information from the state is required to materialize the output

5. A: weighting between the importance of new samples compared to the previous state.



Proposed Method
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Fig. 1. An overview of the proposed framework. DilatedConv3x3 represents dilated convolution with kernel size 3x3. All
Conv+LReLU layers in the decoder have 3x3 convolution followed by Leaky-RelLU. For 3D implementation, all operations are
replaced with their corresponding 3D alternatives (i.e., Conv3x3 to Conv3x3x3).

> Pixel loss, ensure appropriate intensity information is retained between fused and input images L, = llf — max (I, 15)ll;
> Gradient loss, preverse fine-grained texture details from input images, Ly.q = VI; — max(VI;, Vi)l
» Similarity loss, preserve structure similarity between fused and input images, L, =%(1 — SSIM(I¢,17)) + %(1 — SSIM(I4, 15))



2D vs. 3D Scan in Mamba
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Quantitative Results

Dataset Method PSNR T SSIMT FMIT FSIMt ENt
MRI-CT EH-DRAN 16.830+0.490 0.753+0.007 0.8834+0.005 0.8204+0.003 10.7274+0.531
SwinFusion 14.96240.173 0.7684+0.007 0.8824+0.002 0.810+0.001 8.4454+0.078
MRSCFusion 14.4764+0.205 0.7134+0.012 0.877+0.006 0.7914+0.010 7.54440.232
MambaDFuse 15.873+0.289 0.7714+0.007 0.882+0.005 0.8174+0.004 15.0184+0.167
ClinicalFMamba (Ours) 16.51940.352 0.783+0.005 0.883+0.003 0.820+0.001 15.213+0.069
MRI-SPECT EH-DRAN 21.45540.071 0.736+0.002 0.876+0.004 0.843+0.003 11.9704+0.538
SwinFusion 17.5574+0.021 0.72840.004 0.808+0.007 0.819+0.011 13.06640.428
MRSCFusion 18.4124+0.211 0.734+0.012 0.827+0.009 0.814+0.006  9.8740.600
MambaDFuse 21.021+0.034 0.74840.004 0.845+0.006 0.82940.002 14.126+0.439

ClinicalFMamba (Ours) 21.561+0.067 0.759+0.009 0.856+0.003 0.848+0.002 14.871+0.334

PSNR MS-SSIM?T ENT
EH-DRAN-3D 30.6534-0.554 0.8144-0.095 17.402+1.134
ClinicalFMamba-3D (Ours) 33.937-+0.361 0.859--0.045 20.468+1.541




Fusion Time Analysis

For 2D model on BraTS-2D dataset, our model has 4.05M parameters and achieves
an average time of 0.1s per image pair with 128x128 resolution

For 3D model on BraTS-3D dataset, our model has 6.01M parameters and achieves
an avergae time of 7.3s per image volume with 128x128x128 resolution

Ablations

w/o CMCA 15.967+0.349 0.761+0.007 0.876+0.004 0.813+0.005 14.621+0.075 w/o 3D-scan  26.882+0.324  0.833+0.073  19.558+1.374

with CMCA 16.519+0.352 0.783+0.005 0.883+0.003  0.820+0.001 15.213+0.069 with 3D-can 33.937+0.361 0.859+0.045  20.468+1.541



Quantitative Results on BraTS-classification

Dataset Method AUCT F1-Scoret Accuracy?
BraT$S-2D T2 0.72240.021 0.7034+0.018 0.604+0.037
FLAIR 0.727+0.024 0.701+0.008 0.611+£0.017

T2+FLAIR 0.7234+0.028 0.717+0.012 0.640£0.015

EH-DRAN 0.769+0.003 0.72310.006 0.640+0.011
ClinicalFMamba (Ours) 0.790+0.013 0.7784+0.023 0.665+-0.004

BraTS-3D T2-3D 0.647+£0.022 0.5604+0.029 0.635+0.041
FLAIR-3D 0.641+0.110 0.52940.223 0.566+0.010
T2-3D+FLAIR-3D 0.6361+0.072 0.5404+0.145 0.630+£0.027
EH-DRAN-3D 0.646+0.015 0.5714+0.037 0.657+0.016

ClinicalFMamba-3D (Ours) 0.652+0.038 0.584+0.023 0.647+0.013




Conclusion

 Novel CNN-Mamba architecture for effective 2D and 3D medical image fusion

« We propose dilated gated convnets for multiscale feature learning and cross-
modal channel attention for cross-modal information fusion and decode.

« Introduced a tri-plane scanning strategy for 3D medical image fusion.

 The framework is able to generate fused images in real-time, and we valiate the
clinical usage of the fused images through brain tumor classification task.

« Extensive evaluated on three datasets to valid the effectiveness of the proposed
approach.






Appendix
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Ly

- flatten SSM Block unflatten - SiLU - Conv2D



