

## ClinicalFMamba: Advancing Clinical Assessment using Mamba-based Multimodal Neuroimaging Fusion

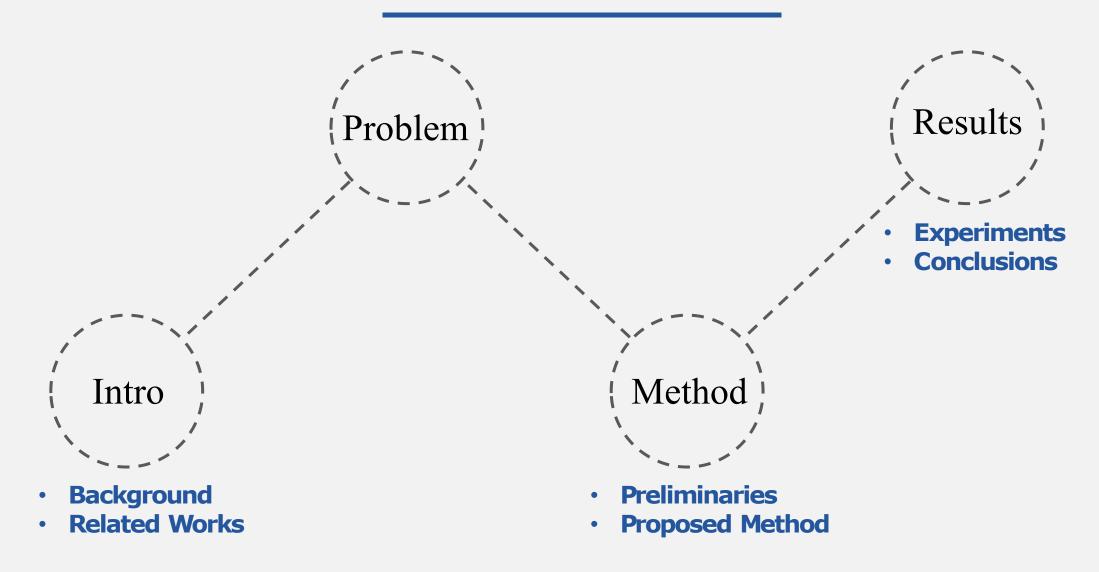
MICCAI MLMI 2025

Meng (Simon) Zhou\*1, and Farzad Khalvati 2,3

<sup>1</sup>TD Bank Group, Toronto, Canada

- <sup>2</sup> Department of Computer Science, University of Toronto, Toronto, Canada
- <sup>3</sup> Department of Medical Imaging, University of Toronto, Toronto, Canada
  \*Work done while at University of Toronto

#### Outline



# Intro

#### Background

- Multimodal medical image fusion plays an increasingly prominent role in clinical diagnosis.
- It aims to aggregate complementary information from different image modalities to produce higher-quality fused images (e.g., anatomical and functional images)
- Due to hardware constraints and current physical imaging principles, individual modalities can only capture specific aspects of tissue characteristics, leading to incomplete diagnostic information.



#### Related Works

- CNN-based:
  - MSRPAN [1]: Residual pyramid attention network for multimodal medical image fusion and Feature Energy Ratio Strategy to fuse feature maps
  - MSDRA [2]: Double residual attention network for multimodal medical image fusion and uses weighted L1 Norm to fuse feature maps.
  - EH-DRAN [3]: Dilated residual attention network + edge enhancer to extract multiscale features and enhance edge details. A family of parameter-free fusion strategies is proposed to fuse feature maps in the latent space.



#### Limitations...

- 1. limited by their inherent local receptive fields, which restrict their ability to capture long-range spatial dependencies.
- 2. Most of the methods are in two-stage, which create another layer of computation
- [1] Fu, J., Li, W., Du, J., & Huang, Y. (2021). A multiscale residual pyramid attention network for medical image fusion. *Biomedical Signal Processing and Control*, 66, 102488. [2] Li, W., Peng, X., Fu, J., Wang, G., Huang, Y., & Chao, F. (2022). A multiscale double-branch residual attention network for anatomical–functional medical image fusion. *Computers in biology and medicine*, 141, 105005.
- [3] Zhou M, Zhang Y, Xu X, Wang J, Khalvati F. Edge-Enhanced Dilated Residual Attention Network for Multimodal Medical Image Fusion. In2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2024 Dec 3 (pp. 4108-4111). IEEE.

#### Related Works

- Transformer-based:
  - SwinFusion [4]: Combining a CNN feature extractor with a cross-domain transformer model to fuse local and global information.
  - MRSCFusion [5]: Combining a multiscale CNN model and applied residual Swin Transformer layers to fuse cross-domain information.
  - MACTFusion [6]: Light-weight cross modality transformer with window and grid attention.



#### Limitations...

- 1. Self-Attention mechanism requires quadratic computational complexity, limiting the practical applications on large image
- 2. Applying the fusion method to real clinical diagnosis tasks is not fully explored.

<sup>[4]</sup> Ma, J., Tang, L., Fan, F., Huang, J., Mei, X., & Ma, Y. (2022). SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer. *IEEE/CAA Journal of Automatica Sinica*, 9(7), 1200-1217.

<sup>[5]</sup> Xie, X., Zhang, X., Ye, S., Xiong, D., Ouyang, L., Yang, B., ... & Wan, Y. (2023). MRSCFusion: Joint residual Swin transformer and multiscale CNN for unsupervised multimodal medical image fusion. *IEEE Transactions on Instrumentation and Measurement*.

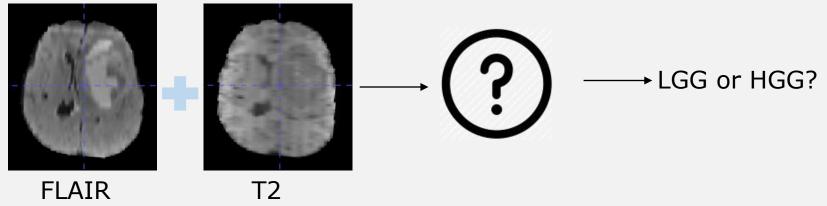
<sup>[6]</sup> Xie, X., Zhang, X., Tang, X., Zhao, J., Xiong, D., Ouyang, L., ... & Teo, K. L. (2024). MACTFusion: Lightweight Cross Transformer for Adaptive Multimodal Medical Image Fusion. *IEEE Journal of Biomedical and Health Informatics*.

#### Problem

 Two most common fusion tasks in medical imaging: MRI-CT and MRI-SPECT fusion tasks (MRI-CT and MRI-SPECT from Harvard Whole Brain Atlas datasets)



• To further validate the effectiveness of the fusion method, we apply it to a downstream clinical brain tumor pathology classification task between Low-Grade and High-Grade Gliomas (BraTS 2019 dataset).





- Preliminaries
- Proposed Method
- Scaning Strategy

#### **Preliminaries**

Mamba is a framework that model sequential data through a hidden state that evolves over time. The transformation from a 1-D sequence x(t) to an output y(t) is achived through a hidden state h(t). The implementation is typically achieved through linear ODEs:

$$h'(t) = Ah(t) + Bx(t), y(t) = Ch(t)$$

To discritize, we use zero-order hold:

$$\overline{A} = exp(\Delta A), \overline{B} = (\Delta A)^{-1}(exp(\Delta A) - I) \cdot \Delta B$$

We can rewrite the first equation as:

$$h_t = \overline{A}h_{t-1} + \overline{B}x_t, y_t = Ch_t$$

#### Selective-scan:

- 1. can focus on or ignore particular information, like self-attention in Transformer
- 2. B, C,  $\Delta$  is dynamic to the input, allowing the model to filter relevent information and focus on important context within long sequences
- 3. B: filter out irrelevant data or to focus on important data to allow only relevant data to enter into the new state.
- 4. C: selective to decide which information from the state is required to materialize the output
- 5. Δ: weighting between the importance of new samples compared to the previous state.

#### **Proposed Method**

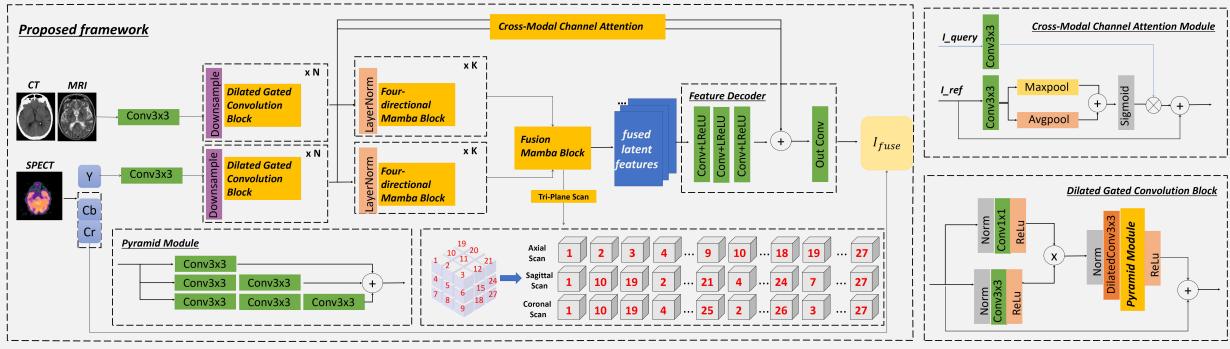
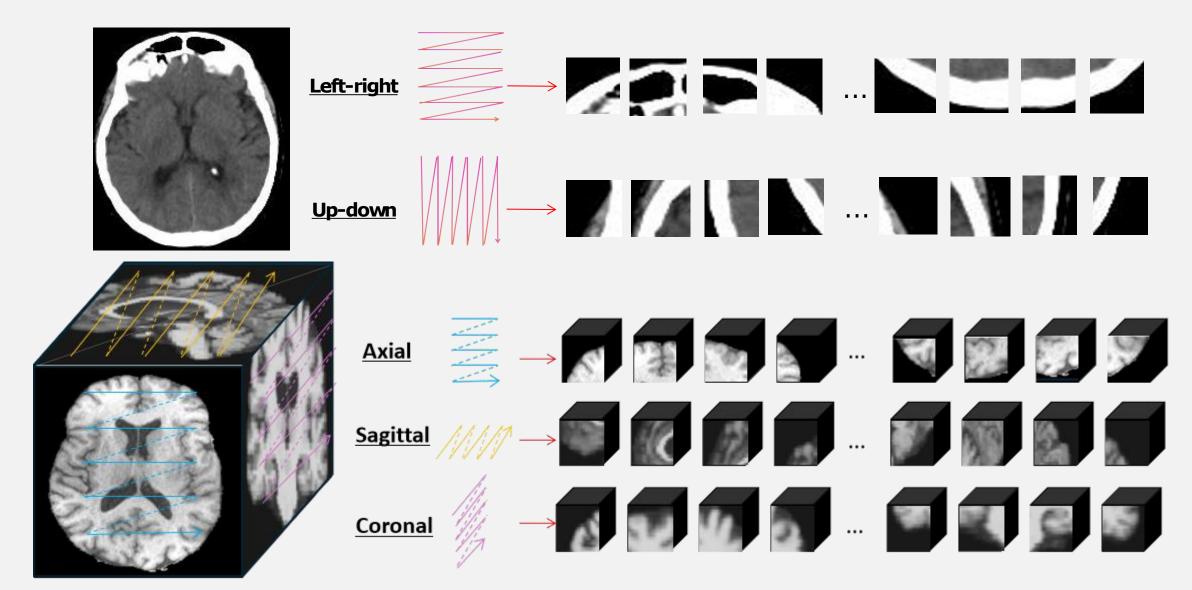


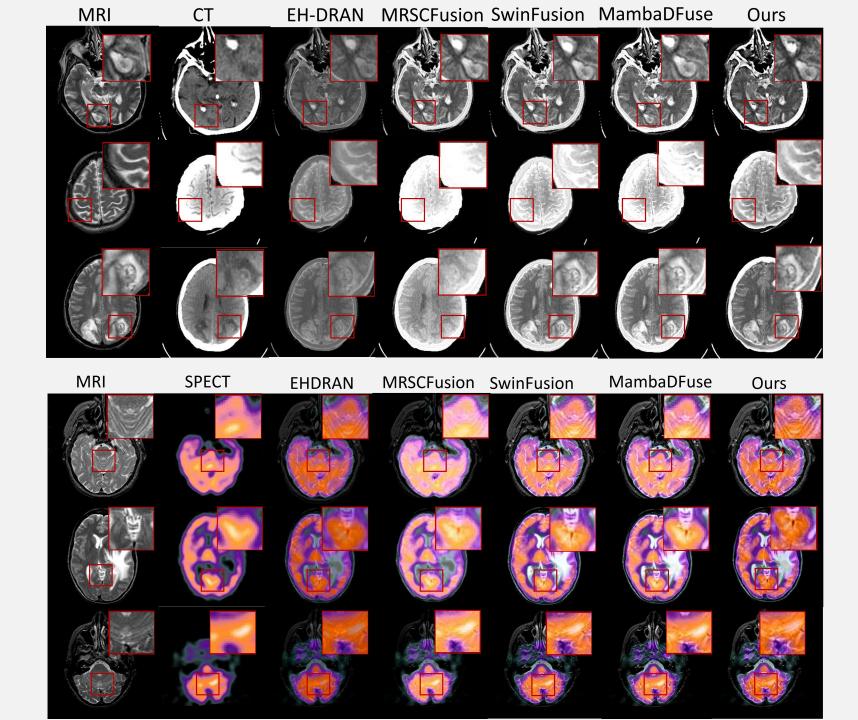
Fig. 1. An overview of the proposed framework. DilatedConv3x3 represents dilated convolution with kernel size  $3\times3$ . All Conv+LReLU layers in the decoder have  $3\times3$  convolution followed by Leaky-ReLU. For 3D implementation, all operations are replaced with their corresponding 3D alternatives (i.e., Conv3×3 to Conv3×3×3).

- $\triangleright$  Pixel loss, ensure appropriate intensity information is retained between fused and input images  $L_{pixel} = ||I_f max(I_1, I_2)||_1$
- ightharpoonup Gradient loss, preverse fine-grained texture details from input images,  $L_{grad} = \|\nabla I_f max(\nabla I_1, \nabla I_2)\|_2$
- Similarity loss, preserve structure similarity between fused and input images,  $L_{ssim} = \frac{1}{2}(1 SSIM(I_f, I_1)) + \frac{1}{2}(1 SSIM(I_f, I_2))$

#### 2D vs. 3D Scan in Mamba



Result



#### **Quantitative Results**

| Dataset   | Method                | PSNR↑                | SSIM↑                 | FMI↑                      | FSIM↑                 | EN↑                  |
|-----------|-----------------------|----------------------|-----------------------|---------------------------|-----------------------|----------------------|
| MRI-CT    | EH-DRAN               | $16.830 {\pm} 0.490$ | $0.753 \pm 0.007$     | $0.883 \pm 0.005$         | $0.820 \pm 0.003$     | $10.727 \pm 0.531$   |
|           | SwinFusion            | $14.962 \pm 0.173$   | $0.768 {\pm} 0.007$   | $0.882 \pm 0.002$         | $0.810 \pm 0.001$     | $8.445 {\pm} 0.078$  |
|           | MRSCFusion            | $14.476 \pm 0.205$   | $0.713 \pm 0.012$     | $0.877 \pm 0.006$         | $0.791 {\pm} 0.010$   | $7.544 {\pm} 0.232$  |
|           | MambaDFuse            | $15.873 \pm 0.289$   | $0.771 \pm 0.007$     | $0.882 {\pm} 0.005$       | $0.817 \pm 0.004$     | $15.018 \pm 0.167$   |
|           | ClinicalFMamba (Ours) | $16.519 \pm 0.352$   | $0.783 \!\pm\! 0.005$ | $\bf 0.883 \!\pm\! 0.003$ | $0.820 \!\pm\! 0.001$ | $15.213 {\pm} 0.069$ |
| MRI-SPECT | EH-DRAN               | $21.455 \pm 0.071$   | $0.736 \pm 0.002$     | $0.876 {\pm} 0.004$       | $0.843 \pm 0.003$     | $11.970 \pm 0.538$   |
|           | SwinFusion            | $17.557 \pm 0.021$   | $0.728 {\pm} 0.004$   | $0.808 {\pm} 0.007$       | $0.819 \pm 0.011$     | $13.066 \pm 0.428$   |
|           | MRSCFusion            | $18.412 \pm 0.211$   | $0.734 \pm 0.012$     | $0.827 \pm 0.009$         | $0.814 {\pm} 0.006$   | $9.87 \pm 0.600$     |
|           | MambaDFuse            | $21.021 \pm 0.034$   | $0.748 \pm 0.004$     | $0.845 {\pm} 0.006$       | $0.829 \pm 0.002$     | $14.126 \pm 0.439$   |
|           | ClinicalFMamba (Ours) | $21.561\pm0.067$     | $0.759 \pm 0.009$     | $0.856 \pm 0.003$         | $0.848 {\pm} 0.002$   | $14.871 \pm 0.334$   |

|                          | PSNR↑                            | MS-SSIM↑                | EN↑                        |
|--------------------------|----------------------------------|-------------------------|----------------------------|
| EH-DRAN-3D               | $30.653 {\pm} 0.554$             | $0.814 {\pm} 0.095$     | $17.402 \pm 1.134$         |
| ClinicalFMamba-3D (Ours) | ${\bf 33.937} {\pm} {\bf 0.361}$ | $\bf 0.859 {\pm} 0.045$ | ${\bf 20.468 {\pm} 1.541}$ |

#### **Fusion Time Analysis**

For 2D model on BraTS-2D dataset, our model has 4.05M parameters and achieves an average time of **0.1s** per image pair with 128x128 resolution

For 3D model on BraTS-3D dataset, our model has 6.01M parameters and achieves an avergae time of **7.3s** per image volume with 128x128x128 resolution

#### **Ablations**

| MRI-CT    | PSNR         | SSIM        | FMI         | FSIM        | EN           |
|-----------|--------------|-------------|-------------|-------------|--------------|
| w/o CMCA  | 15.967±0.349 | 0.761±0.007 | 0.876±0.004 | 0.813±0.005 | 14.621±0.075 |
| with CMCA | 16.519±0.352 | 0.783±0.005 | 0.883±0.003 | 0.820±0.001 | 15.213±0.069 |

| BraTS-3D    | PSNR         | MS-SSIM     | EN           |
|-------------|--------------|-------------|--------------|
| w/o 3D-scan | 26.882±0.324 | 0.833±0.073 | 19.558±1.374 |
| with 3D-can | 33.937±0.361 | 0.859±0.045 | 20.468±1.541 |

#### Quantitative Results on BraTS-classification

| Dataset  | Method                   | AUC↑                | F1-Score↑                | Accuracy↑               |
|----------|--------------------------|---------------------|--------------------------|-------------------------|
| BraTS-2D | T2                       | $0.722 \pm 0.021$   | $0.703 \pm 0.018$        | $0.604 \pm 0.037$       |
|          | FLAIR                    | $0.727 \pm 0.024$   | $0.701 \pm 0.008$        | $0.611 \pm 0.017$       |
|          | $_{ m T2+FLAIR}$         | $0.723 \pm 0.028$   | $0.717 \pm 0.012$        | $0.640 {\pm} 0.015$     |
|          | EH-DRAN                  | $0.769 \pm 0.003$   | $0.723 \pm 0.006$        | $0.640 \pm 0.011$       |
|          | ClinicalFMamba (Ours)    | $0.790 {\pm} 0.013$ | $\bf0.778 \!\pm\! 0.023$ | $0.665 \pm 0.004$       |
| BraTS-3D | T2-3D                    | $0.647 \pm 0.022$   | $0.560 \pm 0.029$        | $0.635 \pm 0.041$       |
|          | FLAIR-3D                 | $0.641 {\pm} 0.110$ | $0.529 \pm 0.223$        | $0.566 {\pm} 0.010$     |
|          | T2-3D+FLAIR-3D           | $0.636 {\pm} 0.072$ | $0.540{\pm}0.145$        | $0.630 {\pm} 0.027$     |
|          | EH-DRAN-3D               | $0.646{\pm}0.015$   | $0.571 \pm 0.037$        | $\bf 0.657 {\pm} 0.016$ |
|          | ClinicalFMamba-3D (Ours) | $0.652 \pm 0.038$   | $0.584{\pm}0.023$        | $0.647 \pm 0.013$       |

#### Conclusion

- Novel CNN-Mamba architecture for effective 2D and 3D medical image fusion
- We propose dilated gated convnets for multiscale feature learning and crossmodal channel attention for cross-modal information fusion and decode.
- Introduced a tri-plane scanning strategy for 3D medical image fusion.
- The framework is able to generate fused images in real-time, and we valiate the clinical usage of the fused images through brain tumor classification task.
- Extensive evaluated on three datasets to valid the effectiveness of the proposed approach.

• Future Work: Explore pure Mamba-based methods and extend to other dieases and downstream tasks like (3D) segmentation.

### Thank you!

#### Arxiv preprint:



#### Appendix

