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Context:
Ø Multimodal image fusion (MMIF) plays an 

increasingly prominent role in clinical diagnosis.
Ø Aggregate complementary information from 

different image modalities to produce higher-
quality fused images (e.g.,  anatomical and 
functional images)

Challenges:
Ø CNN based methods [1] are limited by their 

inherent local receptive fields, which restrict 
their ability to capture long-range spatial 
dependencies.

Ø Transformer based methods [2,3] create 
prohibitive costs for clinical applications with 
large images due to its self-attention 
mechanisms, limiting the practical deployment 
capabilities.

Ø 3D medical image fusion and the clinical 
applicability of fused images are still 
underexplored.

Contributions:
Ø We present a CNN-Mamba hybrid framework to 

effectively model local and global features in 2D 
and 3D medical images.

Ø We propose dilated gated convnets for 
multiscale feature learning and cross-modal 
channel attention for cross-modal information 
fusion.

Ø We are the first to extend the Mamba-based 
fusion method to 3D medical imaging through a 
novel tri-plane scanning strategy

MATERIALS

Qualitative Results on MRI-CT/-SPECT fusion task

Quantitative Results on Downstream Classification task
Ø 2D and 3D LGG/HGG Pathology type ROI-based classification

BraTS-2D AUC F1-Score Accuracy

T2 0.722±0.021 0.703±0.018 0.604±0.037

FLAIR 0.727±0.024 0.701±0.008 0.611±0.017

T2+FLAIR 0.723±0.028 0.717±0.012 0.640±0.015

EH-DRAN 0.769±0.003 0.723±0.006 0.640±0.011

Ours 0.790±0.013 0.778±0.023 0.665±0.004

Ablations
Ø Proposed Cross-modal channel attention module and 3D tri-plane 

scan strategy

Key Takeaways
Ø Visually, the fused images from our method preserve both modality-specific 

features and inter-modal contrast.
Ø Using the fused image, we validate its clinical utility on brain tumor classification 

task by comparing with other methods such as single-modality, dual-modality and 
EH-DRAN basline. Our method yields the best performance, demonstrating strong 
potential for clinical usage.

Dataset and Preprocessing:
Ø MRI-CT and MRI-SPECT datasets from The Harvard 

Whole Brain Atlas dataset, normalized to [0,1]
Ø BraTS 2019 Dataset with T2 and FLAIR sequences 

are used for downstream classification task
Ø Reshape from 240x240x155 to ROI-based volume 

128x128x128 [5], normalized to [0,1]
Ø For 2D, further slice the volume through Axial plane
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Summary:
Ø We propose a novel CNN-Mamba hybrid 

framework for effective multimodal 2D and 
3D medical image fusion. Experiments 
show our method outperforms several 
baselines.

Ø The framework is able to generate fused 
images in real-time, and we valiate the 
clinical usage of the fused images through 
brain tumor classification task.

Future Work:
Ø Extend to other diseases and validation on 

other tasks such as segmentation.
Ø Explore pure Mamba-based method to 

replace CNN.
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Proposed Method:
Ø End-to-end training instead of the two-stage approach [1], the output is the final fused image

Ø Dilated Gated Conv Block is designed to efficiently learn multi-scale local spatial, descrminative features
Ø Mamba blocks with 2D scan for 2D images [4], with 3D tri-plane scan for 3D images
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Loss-Function 
Ø Pixel loss, ensure appropriate intensity information is retained 

between fused and input images
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Ø Gradient loss, preverse fine-grained texture details from input 

images
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Ø Similarity loss, preserve structure similarity between fused 
and input images
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BraTS-3D AUC F1-Score Accuracy

T2-3D 0.647±0.022 0.560±0.029 0.635±0.041

FLAIR-3D 0.641±0.110 0.529±0.223 0.566±0.010

T2-3D+FLAIR-3D 0.636±0.072 0.540±0.145 0.630±0.027

EH-DRAN-3D 0.646±0.015 0.571±0.037 0.657±0.016

Ours-3D 0.652±0.038 0.584±0.023 0.647±0.013

BraTS-2D PSNR SSIM FMI FSIM EN

w/o CMCA 15.967±0.349 0.761±0.007 0.876±0.004 0.813±0.005 14.621±0.075

with CMCA 16.519±0.352 0.783±0.005 0.883±0.003 0.820±0.001 15.213±0.069

BraTS-3D PSNR MS-SSIM EN

w/o 3D-scan 26.882±0.324 0.833±0.073 19.558±1.374

with 3D-can 33.937±0.361 0.859±0.045 20.468±1.541
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